$ \newcommand{\exi}{\exists\,} \newcommand{\all}{\forall} \newcommand{\equ}{\!=\!} \newcommand{\nequ}{\!\neq\!} \newcommand{\amp}{\;\&\;} \renewcommand{\Set}[2]{\left\{\;#1\mathrel{}\middle|\mathrel{}#2\;\right\}} \newcommand{\parenth}[1]{\left(\;#1\;\right)} \newcommand{\braces}[1]{\left\{\;#1\;\right\}} \newcommand{\bracket}[1]{\left[\;#1\;\right]} \newcommand{\godel}[1]{\left\ulcorner #1 \right\urcorner} $

位相空間論

ブール代数4:極大フィルター全体から作られる空間

$(X, \leq)$を順序集合とする。 次の定義をする: $\text{Uf}(X)$ $:\equ$ $\Set{ F \subseteq X }{ F \text{は}X\text{の極大filter} }$ $\text{Ngb} : X \rightarrow \text{Pow}( \text{Uf}(X) ), x \mapsto \Set{ F \in \text{Uf}(X) }{ x \in F }$ $\math…

ブール代数3:$\text{Rasiowa-Sikorski}$の定理と完備分配律

$(X, +, \cdot, -, 0, 1)$をブール代数とする。 $X \text{はc.c.c.} :\Leftrightarrow \all A \subseteq \;\bracket{ \all x, y \in A \;\parenth{ x \nequ y \Rightarrow x \cdot y \equ 0 } \Rightarrow A \text{は高々加算} }$ $\text{c.c.c.}$とはcounta…

ブール代数2:$\text{Generic}$について

$(X, +, \cdot, -, 0, 1)$をブール代数とする。 $\phi \nequ A \subseteq X$とする。 $A$は$\text{filter}$ $:\Leftrightarrow$ $\left\{\begin{array}{@{}c@{}l@{}} (1) & 1 \in A \\ (2) & \all a, b \in A \;\; a \cdot b \in A \\ (3) & \all a \in A \;…

ブール代数1:ブール代数はある完備ブール代数に埋め込める

下図の「1→2→3」の順で議論を進めていく(定理の番号に対応しているわけではない): ${\vcenter{\def\labelstyle{\textstyle} \begin{xy}*[white]\xymatrix@C=30pt@R=15pt{ ブール代数 \ar@1@<1ex> `d/2pt[dr]_{3} `r/2pt[r] [r] \ar@1{^{(}->} [r] & 完備ブー…

${\rm Compact}$について多少の命題

$(X, d_X), (Y, d_Y)$ を距離空間とする。 $X {\rm はcompact}$ と仮定する。 $\all f : X \rightarrow Y \;\parenth{ f {\rm は連続} \Rightarrow f {\rm は一様連続} }$ が成り立つ。 $\varepsilon \in {\mathbb R}^+$ を任意に取る。 ${\cal S} :\equiv \…

距離付け可能定理について

$(X,d)$ を距離空間とする。 $\all U \in {\cal O}_d \; \all x \in U \; \exi \varepsilon \in {\mathbb R}^+ \;\parenth{ x \in } B_{\varepsilon}(x) \subset U$ が成り立つ。 $x \in U \in {\cal O}_d$ を任意に取る。 $\exi {\rm 有限集合} {\cal S} \s…

Compact、点列Compact、完備かつ全有界の同値性

$(X, {\cal O})$ を位相空間とする。 $X {\rm はLindel\ddot{o}fの性質を持つ} :\Leftrightarrow \all {\cal U} \subset {\cal O} \; \parenth{ {\cal U} {\rm は被覆} \Rightarrow \exi {\rm 可算} {\cal V} \subset {\cal U} \; {\cal V} {\rm は被覆} }$ …

全有界について多少の命題

$(X, d)$ を距離空間とする。 ${\rm diam} {\rm \ or \ } {\rm diam}_X : {\frak P}(X) \backslash \{\phi\} \rightarrow [0,\infty], S \mapsto {\rm sup}\Set{ d(x,y) }{ x,y \in S }$ $X {\rm はtotally \ bounded(全有界)}$ $:\Leftrightarrow$ $\all \v…

連結性について多少の命題

$(X, {\cal O}_X), (Y, {\cal O}_Y)$ を位相空間とする。 $f : X \rightarrow Y$ を連続写像とする。 $\all A \subset X \;\parenth{ A {\rm は連結} \Rightarrow f(A) {\rm は連結} }$ が成り立つ。 [対偶法]$f(A) {\rm は連結でない}$ と仮定する。 $\exi …

距離空間の完備化

$(X,d)$ を距離空間とする。 $\exi {\rm 距離空間}(X^*,d^*) \; \exi f:X \rightarrow X^* \left\{\begin{array}{@{}c@{}l@{}l@{}} {\rm (i)}^{AC} & (X^*,d^*) {\rm はcomplete} & {\rm かつ} \\ {\rm (ii)} & f {\rm はisometry} & {\rm かつ} \\ {\rm (ii…

$\text{Urysohn}$の補題 と $\text{Tietze}$の拡張定理

$(X,{\cal O})$ を位相空間とする。 $X$は$T_4$ $\Leftrightarrow \all A \in {\cal C} \; \all U \in {\cal O} \; \parenth{ A \subset U \Rightarrow \exi V \in {\cal O} \;\; A \subset V \land {\overline V} \subset U }$ が成り立つ。 $X$は$T_4$$\Le…

$T_3$空間かつ第2可算ならば$T_4$空間

$(X,{\cal O})$ を位相空間とする。 $X$は$T_3$空間 $\Leftrightarrow$ $\all x \in X \all U \in {\cal O} \;\parenth{ x \in U \Rightarrow x \in \exi V \in {\cal O} \; {\overline V} \subset U }$ が成り立つ。 $X$は$T_3$空間 $\Leftrightarrow \all …

位相空間の一点コンパクト化

$(X,{\cal O})$ を位相空間とする。 $\all A \subset X \; (X \backslash A)^\circ \equ X \backslash {\overline A}$ である。 $(X,{\cal O})$ を位相空間とする。 $\all A, B \subset X \; \parenth{ A {\rm は閉集合かつ} B {\rm はCompact} \Rightarrow …

復習:開集合系の基底、直積位相、基本近傍系

開集合系の基底について復習する。 $(X, {\cal O}_X)$ を位相空間とする。 ${\cal U} \subset {\cal O}_X$ とする。 ${\cal U}$は${\cal O}_X$の基底である $:\Leftrightarrow$ ${\cal O}_X \equ \Set{ \bigcup {\cal V} }{ {\cal V} \subset {\cal U} }$ $\…

${\rm Tychonoff}$の定理

まず、本定理の証明に必要な命題を述べておく。 $\left( X, {\cal O}_X \right)$ を位相空間とする。 $x \in X$ とする。 ${\mathbb V}(x)$ を $x$ の近傍系とする。 ${\mathbb V}^*(x)$ を $x$ の基本近傍系とする。 $\all A \subset X \;\parenth{ x \in \…

${\rm Compact}$かつ${\rm Hausdorff}$ならば${\rm 正規}$

位相空間$\left( X,{\cal O}_X \right)$に対し、 ${\cal C}_X :\equiv \Set{ A \subset X }{ X \backslash A \in {\cal O}_X }$ と置く。 $\left( X,{\mathcal O}_X \right)$を位相空間とする。 $A \subset X$ とする。 以下は同値である: $A$はCompact $\a…